THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

082

ELECTRICAL ENGINEERING SCIENCE

(For both School and Private Candidates)

TIME: 3 Hours.

12 November 1999 P.M.

INSTRUCTIONS

- 1. This paper consists of Sections A and B.
- Answer <u>ALL</u> questions in Section A, and any <u>FOUR</u> (4) questions from Section B.
 Section A carries 40% and Section B carries 60%.
- 3. Scientific calculators are allowed.

This paper consists of 3 printed pages.

SECTION A: (40%)

- 1. What is meant by the term "resistivity" of a material? Give its SI unit.
- 2. What are the uses of the following instruments in electrical circuits?
 - (a) Ohmmeter
 - (b) Ammeter.
- What are the main losses in transformers?
- A double-wound transformer has a 240V in the primary winding consisting of 2400 turns. Calculate the "volt per turn".
- State how eddy-current losses can be reduced in d.c. machines.
- The frequency of an oscillating quantity is 50Hz. What is the period of oscillation?
- A conductor 0.5m long carries a current of 25A and lies at right angles to a magnetic field of density 0.25T. Determine the force exerted on the conductor.
- Explain how the power factor of an inductive load may be improved.
- Define the term "a time constant" of an RC circuit.
- 10. What is meant by Polarization in a simple voltaic cell?

SECTION B: (60%)

- 11. What is the power factor of a coil of resistance 5Ω and inductance 0.1H when connected to a 250V, 50Hz supply? What power will the coil consume under these conditions?
- 12. A water heater holds 20 litres of water. Calculate the rating in kW of the electric immersion heater which will raise the temperature of the water from 10°C to 88°C in 55 minutes, assuming an efficiency of 85 per cent.

(The specific heat capacity of water = 4200J/Kg°C) (1 litre of water = 1 kg).

- 13. A load of 19.2kW is supplied from the terminal of a generator at 240V. The shunt winding of the generator has a resistance of 96Ω and the resistance of the armature is 0.2Ω . There is a brush contact volts drop of 2V. Calculate:
 - (a) the armature current, and
 - (b) the generated e.m.f.
- 14. (a) A double-wound transformer is used to supply 50V from the 250V mains. The primary winding contains 1500 turns. Find:
 - (i) the number of secondary turns and
 - (ii) the secondary current when the primary is 5A.

- (b) The primary winding of a double-wound step-down transformer takes a current of 6A at 2000V. If the transformer ratio is 20:1, calculate.
 - (i) the secondary voltage and
 - (ii) the secondary current.
- 15. Four Leclanché cells are joined, two in series and two such groups in parallel. The e.m.f. of each cell is 1.5V and internal resistance 3Ω . The combination is connected to an external resistance of 3Ω . Find
 - (a) the total internal resistance;
 - (b) the current
 - (c) the current through each cell; and
 - (d) the voltage across the external resistance.
- 16. (a) Define the Inverse Square Law of Illumination.
 - (b) A fitting designed for a shop window gives a light intensity of 1000 candela downwards.
 - (i) the distance required to produce an illumination of 10 lux on a horizontal display counter.
 - (ii) If the distance is doubled, what must be the power of the source to produce the same illumination?

082

3